Penerapan Algoritma K-Means Clustering dan Correlation Matrix Untuk Menganalisis Risiko Penyebaran Demam Berdarah di Kota Pekanbaru
Abstract
Dengue cases in Pekanbaru in November 2020 reached 2,788 cases and 33 deaths. The government has carried out socialization to eradicate mosquito nests and provided vector control tools and materials. However, the government's efforts were not practical because the applied method has not been able to refer to vector data and information. Machine learning can be used to analyze specific problems such as Dengue. Therefore this study employed a Machine Learning algorithm, i.e., k-means clustering and correlation matrix for dengue risk analysis in Pekanbaru. This study obtained 12 sub-districts and 50 dengue attributes and weather data in 2020. K-means automatically searches for unknown clusters from dengue cases data quickly, which cluster results C1 (Sukajadi, Senapelan), C2 (Tenayan Raya, Tampan), and C3 (Rumbai Pesisir, Rumbai). Based on experimental testing, this study produced a silhouette score is 0.6. Meanwhile, the correlation matrix looks for relevant relationships hidden in the data. The correlation matrix obtained a strong linear relationship between the population (JP) and sufferers (P) of 0.73 for January and 0.93 for February 2020.
Keywords Dengue Fever, K-means, Correlation matrix, Machine learning.
Full Text:
PDF FILE DOWNLOAD (Indonesian)References
H. Riau, Hingga Oktober 2020, Sudah 2.788 Warga Riau Kena DBD, www.halloriau.com, 2020. https://www.halloriau.com/read-otonomi-139242-2020-11-26-hingga-oktober-2020-sudah-2788-warga-riau-kena-dbd.html (accessed Apr. 22, 2021).
B. Pemko, Angka DBD di Kota Pekanbaru Mencapai 474 Kasus, www.pekanbaru.go.id, 2020. https://www.pekanbaru.go.id/p/news/angka-dbd-di-kota-pekanbaru-mencapai-474-kasus (accessed Apr. 23, 2021).
K. K. R. Indonesia, Kesiapsiagaan Menghadapi Peningkatan Kejadian Demam Berdarah Dengue Tahun 2019, p2p.kemkes.go.id, 2019. http://p2p.kemkes.go.id/kesiapsiagaan-menghadapi-peningkatan-kejadian-demam-berdarah-dengue-tahun-2019/ (accessed Apr. 25, 2021).
N. Susianti, Strategi Pemerintah Dalam Pemberantasan Demam Berdarah Dengue (Dbd) Di Kabupaten Merangin, Bul. Penelit. Sist. Kesehat., vol. 22, no. 1, pp. 3443, 2019, doi: 10.22435/hsr.v22i1.1799.
M. Hariyanto and R. T. Shita, Clustering pada Data Mining untuk Mengetahui Potensi Penyebaran Penyakit DBD Menggunakan Metode Algoritma K-Means dan Metode Perhitungan Jarak Euclidean Distance, Sist. Komput. dan Tek. Inform., vol. 1, no. 1, pp. 117122, 2018.
R. Kurniawan, S. N. H. S. Abdullah, F. Lestari, M. Z. A. Nazri, A. Mujahidin, and N. Adnan, Clustering and Correlation Methods for Predicting Coronavirus COVID-19 Risk Analysis in Pandemic Countries, 2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM 2020, 2020, doi: 10.1109/CITSM50537.2020.9268920.
K. Fatmawati and A. P. Windarto, Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi, Comput. Eng. Sci. Syst. J., vol. 3, no. 2, p. 173, 2018, doi: 10.24114/cess.v3i2.9661.
A. S. Ichwani and H. A. Wibawa, Prediksi Angka Kejadian Demam Berdarah Dengue (DBD) Berdasarkan Faktor Cuaca Menggunakan Metode Extreme Learning Machine (Studi Kasus Kecamatan Tembalang), J. IPTEK, vol. 23, no. 1, pp. 3138, 2019, doi: 10.31284/j.iptek.2019.v23i1.471.
R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, Analisis K-Means Clustering pada Data Sepeda Motor, INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.
DOI: http://dx.doi.org/10.51213/jimp.v6i3.353
Copyright (c) 2021 J I M P - Jurnal Informatika Merdeka Pasuruan