PENGUKURAN TINGKAT KEMATANGAN KOPI ARABIKA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR
Abstract
Coffee has an important role in improving the national economy. Coffee is also one of the fourth major export commodities in foreign countries. Assessing the level of ripeness of a good coffee can be seen depending on the type of coffee itself. Arabika coffee will start to ripen on days 310 to 350 and for Arabica coffee types it will start to look ripe at the age of 210 to 250 days. In classifying coffee maturity, the K-Nearest Neighbor (KNN) method can be used. By taking a sample image of 3 arabika coffee grains with different levels of maturity twice. The existing data will be processed using the HSV feature to assess the RGB of the coffee bean image data. Based on the test results that have been determined. An accuracy calculation has been used to measure KNN and HSV's performance in determining the ripeness of arabika coffee. The calculation results show the performance of KNN at K=1 is outstanding,, 93.33%.
Keywords Arabica Coffee, ripeness level, K-Nearest Neighbor, HSV, accuracy
Full Text:
PDF FILE DOWNLOAD (Indonesian)References
M. M. Sebatubun and M. A. Nugroho, Ekstraksi Fitur Circularity untuk Pengenalan Varietas Kopi Arabika, J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, pp. 283289, 2017, doi: 10.25126/jtiik.201744505.
K. Siswa, Klasifikasi Potensi Berdasarkan Kepribadian Siswa, in Conference on Innovation and Application of Science and Technology (CIASTECH 2020), 2020, no. Ciastech, pp. 327334.
O. R. Indriani, E. J. Kusuma, C. A. Sari, and E. H. Rachmawanto, Tomatoes classification using K-NN based on GLCM and HSV color space, in 2017 international conference on innovative and creative information technology (ICITech), 2017, pp. 16.
D. Syahid, J. Jumadi, and D. Nursantika, Sistem Klasifikasi Jenis Tanaman Hias Daun Philodendron Menggunakan Metode K-Nearest Neighboor (KNN) Berdasarkan Nilai Hue, Saturation, Value (HSV), J. Online Inform., vol. 1, no. 1, pp. 2023, 2016.
E. Budianita, J. Jasril, and L. Handayani, Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi Berbasis Web, J. Sains dan Teknol. Ind., vol. 12, no. 2, pp. 242247, 2015.
J. J. Kusumo, Rancang Bangun Perangkat Lunak Mengklasifikasi Kualitas Biji Kopi Dengan Metode Backpropagation (Studi Kasus: Material Warehouse PT. Santos Jaya Abadi), J. Tugas Akhir Univ. Narotama, pp. 110, 2014.
S. Y. Riska and P. Subekti, Klasifikasi Level Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Multi-SVM, J. Ilm. Inform., vol. 1, no. 1, pp. 3945, 2016.
I. A. Halela, B. Nurhadiyono, S. Si, M. Kom, and F. Z. Rahmanti, Identifikasi Jenis Buah Apel Menggunakan Algoritma K-Nearest Neighbor (KNN) dengan Ekstraksi Fitur Histogram, Techno. COM, pp. 18, 2016.
A. Zubair and A. R. Muslikh, Identifikasi jamur menggunakan metode k-nearest neighbor dengan ekstraksi ciri morfologi, in Seminar Nasional Sistem Informasi (SENASIF), 2017, vol. 1, no. 1, pp. 965972.
DOI: http://dx.doi.org/10.51213/jimp.v6i3.280
Copyright (c) 2021 J I M P - Jurnal Informatika Merdeka Pasuruan