PERAMALAN JUMLAH MAHASISWA BARU DENGAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

Mohamad As’ad, Sigit Setyo Wibowo, Evy Sophia

Abstract


Peramalan jumlah mahasiswa baru merupakan salah satu hal yang dapat dipakai untuk bahan perencanaan proses belajar mengajar, oleh karena itu perlu dilakukan prediksi jumlah mahasiswa baru. Penelitian ini dilakukan di kampus STMIK Pradnya Paramita Malang. Data tahunan yang di analisis diambil mulai tahun 2000 hingga 2016. Untuk meprediksi jumlah mahasiswa baru tersebut digunakan model Autoregressive Integrated Moving Average (ARIMA). Model ini adalah gabungan antara autoregressive dan moving average. Model ini bisa digunakan untuk peramalan data yang ada trendnya, musiman dan juga penghalusan data.
Model ARIMA yang digunakan adalah model ARIMA (2,2,1) dan ditulis sebagai berikut:
(1+0.7795 B + 0.6484 B2 ) (1-B )2 Yt = (1 – 0.8575B) at
dimana, p (B) = (1 - 1B1 - 2B2- …- pBp), Φp (B) = (1 - Φ1B1 - Φ2B2- …- ΦpBp), Yt = data at = error
Dari model ini diketahui bahwa data sekarang tergantung dari data dua periode yang lalu dan errornya tergantung dari satu periode yang lalu. Model ini mempunyai nilai mean square error (MSE) sebesar 446,22.
Hasil dari penelitian ini dapat dipakai sebagai salah satu acuan dalam perencanaan proses belajar mengajar oleh pihak kampus.

Kata kunci - STMIK Pradnya Paramita, Peramalan, Jumlah Mahasiswa Baru, ARIMA

Full Text:

PDF (Indonesian)

References


Abdullah. L. (2012): ARIMA Model for Gold Bullion Coin Selling Prices Forecasting. International Journal of Advances in Applied Sciences (IJAAS)., 153~158.

As’ad. M.(2012): Finding The Best Arima Model to Forecast Daily Peak Electricity Demand. 5th Annual Applied Statistics Education and Research Collaboration (ASEARC) (pp. 39-42). Wollongong: Wollongong University.

Arian Dhini. I.S. (2015) Forecasting Analysis Of Consumer Goods Demand Using Neural Networks And Arima. International Journal of Technology 872-880.

Banhi Guha, G.B. (2016). Gold Price Forecasting Using ARIMA Model. Journal of Advanced Management Science, 117-121.

Prapanna Mondal. L.S. (2014). Study Of Effectiveness Of Time Series Modeling (Arima) In Forecasting Stock Prices. International Journal of Computer Science, Engineering and Applications (IJCSEA). 13-29.

Sarpong. S A. (2013). Modeling and Forecasting Maternal Mortality; an Application of ARIMA Models. International Journal of Applied Science and Technology. 19-28.

Musundi Sammy Wabomba, M.P. (2016). Modeling and Forecasting Kenyan GDP Using Autoregressive Integrated Moving Average (ARIMA) Models. Science Journal of Applied Mathematics and Statistics. 64-73.

George Box, J. R. (1994): Time Series Analysis, Forecasting and Control. Englewood Cliffs: Prentice Hall.

William WS Wei, (1990). Time series Analysis: Univariate and Multivariate Methods. California: Addison-Wesley Publishing Co.




DOI: http://dx.doi.org/10.51213/jimp.v2i3.77

Copyright (c) 2017 J I M P - Jurnal Informatika Merdeka Pasuruan E-ISSN 2503-1945



Link Nonton GratisTonton GratisUnited GamingSV388Scatter HitamBonanza CandylandFundacion RapalaFlowin77Link Alternatif Flowin77flowin77 deposit qrisDunia FaunaFakta SehariTren HarapanGadgetkanGosipliciousiNewsComplexiNewsFootballPollux TierFoomer OfficialCommon SightJurnal TempoRuang MistisiNews CombatSitus Slot DemoLove Food Ready MealsPetite PaulinaLink Scatter HitamLink Slot Gacor ThailandBonanza CandylandSV388Bandar TogelLive Casino Baccarat