PENERAPAN TRANFORMASI RUANG WARNA YUV DAN WAVELET DALAM MENINGKATKAN INTENSITAS PIXEL PADA ANALISA CITRA PANAS PAYUDARA
Abstract
Kata kunci - payudara, citra panas, infra merah, wavelet, YUV
Full Text:
PDF (Indonesian)References
Alam, W., & Musaruddin, M. (2014). Analisis Fitur Fraktal citra termogram sebagai pendukung deteksi dini kanker payudara. Seminar nasional Sains dan Teknologi (hal. 1-8). Jakarta: Universitas Muhammadiyah
Arora, N., Martins, D., Rugggerio, D., Tousimis, E., Swistel, A. J., & Osborne, M. P. (2008). Effectivess of a non-invasie digital infrared thermal imaging system in the detection of breast cancer. Am J Surg , 523-526.
Bantikyan, Hovhannes. (2014). “Discrete Haar Wavelet Transformation”. diakses 26 Desember 2016, dari Code Project: https://www.codeproject.com/Articles/683663/Discrete-Haar-Wavelet-Transformation
Choi, J. S., Lee, J. H., Shin, K. Y., Kim, Y. G., & Lee, T. (2015 : 15). Human Detection Based on the Generation of a Background Image by Using a Far-Infrared Light Camera. Sensor Journal , 6763-67888.
Darma, P. (2010). Pengolahan Citra Digital. Yogyakarta: ANDI OFFSET.
Hossein, G., Somying, T., Sugino, N., Gansawat, D., & Zadeh, H. G. (2016, 8(1)). Comparative accuracy of digital infrared thermal imaging (DITI) in breast cancer diagnosis. journal of chemical and pharmaceutical reseacrh , 557-583.
Helja, M., Nurhasanah, & Sampurno, J. (2013, 3(2)). Analisis fraktal citra mamogram berbasis tekstur sebagai pendukung diagnosa kanker payudara. Positron , 35-38.
Kusumadewi, A. (2012). Evaluasi ciri citra termografi dengan metode wavelet untuk kanker payudara. Magistra , No 81, 63-75.
Kennedy, D., & Lee, T. (2009, Agust). A Comparative review of thermography as a breast cancer screening tecchnique. Tntegrative Cancer Therapies , hal. 9-16.
Kesehatan, K. (2015, Semester 1). Buletin Jendela Data & Informasi Kesehatan. Situasi Penyakit Kanker .
Lashkari, A., Pak, F., & Firoozmand, F. (2016). Full Intelligent Cancer Classification of Thermal Breast Images to Assist Physician in Clhinical Diagnostif Applications. Journal Med Signal Sensors , 6(1) : 12-24.
McCaffrey, James. (2014). “Neural Networks Using C#: Succintly”. Morrisville: Syncfution, Inc.
Prabha, S., Suganthi, S. S., & Sujatha, C. M. (2015, vol 23(4)). An approch to analye the breast tissues in infrared images using non linier adaptive level sets and riesz transform feature. Technology and Health Care , 429-442.
Swedia E R, Cahyanti M, (2010, Juli), Algoritma Transformasi Ruang Warna, Universitas Gunadharma,Depok, Jakarta
Tavakol, M., & Ng, E. Y. (2013). A Review : Breast thermography as a potensialnNon contact method in the early detection of cancer. J Mech Med.Biol
Zadeh, H., Hahhania, J., & Montaeri, A. (2016). A Model for diagnosing breast cancerous tissue from thermal images using active contour and lyapunov exponent. Iran J Public Health , 657-669.
DOI: http://dx.doi.org/10.51213/jimp.v3i1.92
Copyright (c) 2018 J I M P - Jurnal Informatika Merdeka Pasuruan E-ISSN 2503-1945