Sistem Pendukung Keputusan Untuk Mengukur Permintaan Produk Pada e-Commerce dengan Fuzzy Inference System: (Studi Kasus

Fadil Indra Sanjaya, Dadang Heksaputra, Muhammad Fachrie, Sulistyo Dwi Sancoko, Nuzula Afini, Zahra Septa Hati


Measuring product demand is an important process for e-commerce companies to assess product viability in the future production. Measuring product demand can assist e-commerce companies to produce and developing new products based on market potential. Decision maker usually only using their best seller product as indicator to estimate future market trend. But in the fact future market trend will not only based on best seller product, but also there several criteria which is needs attention too. In order to use several criteria to estimate market trend, need some analysis so it will take a long time. With Decision Support System (DSS), decision making will be easier and faster. In this research the DSS takes into consideration the following input variables:  Total Sales (TS), Rating (R), Viewed (V), Total Comments (TC) and output Product Demand (PD). Once the Fuzzy Inference System model has been developed, an assessment of the variables is made through testing 1-years data, which allows verifying how the variables behave in the system under study, and their impact on the output variables. Through the application of Fuzzy Inference System in DSS regarding the modeling several criteria that impact product demand, it is possible to increased efficiency and maximizing profit

Keyword— DSS, Fuzzy Inference System, Tsukamoto, e-Commerce, Product Demand


R. Aydin, C. K. Kwong, P. Ji, and H. M. C. Law, Market Demand Estimation For New Product Development By Using Fuzzy Modeling And Discrete Choice Analysis, vol. 142, pp. 136–146, 2014

D. McFadden, The Measurement Of Urban Travel Demand, vol. 3, no. 4, pp. 303–328, 1974

P. E. Green and V. Srinivasan, Conjoint Analysis In Marketing?: New With Developments For And Practice, vol. 54, no. 4, pp. 3–19, 2013.

I. Burhan Turksen and I. A. Willson, A Fuzzy Set Preference Model For Consumer Choice, vol. 68, no. 3, pp. 253–266, 1994

R. P. Vásquez, A. A. Aguilar-Lasserre, M. V. López-Segura, L. C. Rivero, A. A. Rodríguez-Duran, and M. A. Rojas-Luna, Expert System Based On A Fuzzy Logic Model For The Analysis Of The Sustainable Livestock Production Dynamic System, vol. 161, no. May, pp. 104–120, 2019

E. Y. Nugraha and I. W. Suletra, Analisis Metode Peramalan Permintaan Terbaik Produk Oxycan Pada PT. Samator Gresik, pp. 2579–6429, 2017

D. R. Cahyadewi, A. A. P. A. S. Wiranatha, and I. K. Satriawan, Analisis Peramalan Permintaan Dan Pengendalian Persediaan Bahan Baku Body Scrub Powder Di CV. Denara Duta Mandiri, vol. 8, no. 3, p. 360, 2020

A. Lusiana and P. Yuliarty, PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP Di PT X, vol. 10, no. 1, pp. 11–20, 2020

I. H. Santi and A. R. Saputra, Prediksi Jumlah Permintaan Telur Ayam Menggunakan Metode Trend Moment, vol. 14, no. 2, p. 111, 2019

L. Sunarmintyastuti, S. Alfarisi, and F. S. Hasanusi, Peramalan Penentuan Jumlah Permintaan Konsumen Berbasis Teknologi Informasi Terhadap Produk Bordir Pada Kota Tasikmalaya, vol. 16, no. 3, pp. 288–296, 2017

F. Indra Sanjaya and D. Heksaputra, Sistem Pendukung Keputusan Pemilihan Tenaga Kontrak Melalui Pendekatan Fuzzy Inference System Dengan Metode Tsukamoto (Studi Kasus PT. Solo Murni), pp. 1907–5022, 2016.

J. C. Wyatt and P. Taylor, Decision Support Systems And Clinical Innovation, pp. 123–137, 2008

M. P. Martínez et al., Fuzzy Inference System To Study The Behavior Of The Green Consumer Facing The Perception Of Greenwashing, vol. 242, 2020