PREDIKSI OPERASI SESAR DENGAN MACHINE LEARNING

Agung Wibowo, Ida Darwati, Oky Irnawati

Abstract


Biaya persalinan dengan operasi sesar saat ini biaya nya berlipat dibandingkan dengan biaya persalinan normal hal ini tentunya wajib diantisipasi oleh keluarga. Machine learning dapat menjadi salah satu opsi untuk memprediksi kemungkinan persalinan dengan sesar. Peneliti sebelumnya sudah melakukan prediksi dengan cara meng-klasifikasikan dataset operasi sesar, tetapi akurasi hasil uji menunjukkan hasil yang berbeda. Paper ini melakukan verifikasi hasil uji dengan melakukan uji ulang menggunakan algoritma Multi Layer Preceptron (MLP). Peneliti sebelumnya tidak melakukan proses pembagian dataset menjadi dataset training dan testing. Penelitian ini membagi dataset dibagi menjadi dataset training dan testing sehingga nilai akurasinya dapat pertanggungjawabkan. Hasil uji menunjukkan bahwa akurasi terbaik berada pada kisaran 56% dan dataset nya teridentifikasi underfit.

Full Text:

PDF

References


Adinugroho, S., & Sari, Y. A. (2018). Implementasi Data mining. Malang, Indonesia: UB Press.

Amin, M. Z., & Ali, A. (2018). Application of decision tree algorithm for data mining in healthcare operations: A case study. California, USA: Wavi AI Research Foundation.

Ayyappan, G. (2018). Various classifications for caesarian section classification dataset data set. Indian Journal of Computer Science and Engineering (IJCE), 9(6), 145-147.

Ayyappan, G., & SivaKumar, K. (2019). Meta classifications for Acute Inflammations Data Set. Indian Journal of Computer Science and Engineering, 10(1), 26-27.

Bonvicini, L., Candela, S., Evangelista, A., Berta, D., Casoli, M., Lusvardi, A., et al. (2014). Public and private pregnancy care in Reggio Emilia Province: an observational study on appropriateness of care and delivery outcomes. BMC Pregnancy Childbirth.

Candelieri, A. D. (2011). Data Mining in Neurology. In Knowledge Oriented Applications in Data Mining (pp. 261-276). Rijeka,Croatia: InTech.

Fayyad, U., Smyth, P, & Shapiro, G. P. (1996). From Data Mining to Knowledge Discovery in Database. American Association for Artificial Intellegence, 37-54.

Haag, L. (2019). The Robson classification in use: Weaknesses and difficulties when working with the Robson classification system. Kaunas: Lithuanian University of Health Sciences.

Han, J., Kamber, M., & Pei, J. (2006.). Data Mining: Concepts and Techniques, 2nd Edition. Massachusetts, USA: Morgan Kaufmann Publishers.

Kantardzic, M. (2003). Data Mining: Concepts, Models, Methods, and Algorithms. New Jersey: John Wiley & Sons.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al. (2011). Big data: The next frontier for innovation, competition, and productivity. The McKinsey global Institute.

Milovic, B., & Milovic, M. (2012). Prediction and Decision Making in Health Care using Data Mining. International Journal of Public Health Science (IJPHS), 1(2), 69-78.

Rodriguez, I. J., Silva, A., Killiam, T., Son, S.-H., & Gombolay, M. (2019). Towards Interpretable, Online Reinforcement Learning with Differentiable Decision Trees. arXiv.

Suyanto. (2018). Machine Learning Tingkat Dasar dan Lanjut. Bandung, Indonesia: Informatika.

Yanev, N., Valev, V., Krzyzak, A., & Sulaiman, K. B. (2019). Supervised classification using graph-based space partitioning. Pattern Recognition Letters, 128, 122-130.




DOI: http://dx.doi.org/10.37438/jimp.v4i3.228